Algebra II
 12-1
 Angles and Degree Measure

Sketch each angle in standard position. Indicate its rotaion by a curved arrow. Classify each angle by its quadrant. If the angle is a quadrantal angle, say so.

1 a) 135° II
b) -135° III

Quadrantal angle - angle whose terminal side is in between quadrants.

Angles in the Standard Position - initial side must lie on the positive x-axis, verfex must lie on the origin.
Draw an angle in standard position and label its parts.

Sketch in standard position the angle described and then find its measure.
13) $2 / 3$ of a counterclockwise revolution

$$
360^{\circ}\left(\frac{2}{3}\right)=240^{\circ}
$$

For the following,
a) Write a formula for the measures of all angles coterminal with the given angle.
b) Use the formula to find two angles, one positive and one negative, that are coterminal with the given angle.
23) 35°

$$
\begin{aligned}
& \text { a) } 35^{\circ}+360^{\circ} n, n \in \mathbb{Z}^{\text {integers }} \\
& \text { b) } 35^{\circ}+360^{\circ}(1)=395^{\circ} \\
& 35^{\circ}+360^{\circ}(-1)=-325^{\circ}
\end{aligned}
$$

Express in degrees to thenearest tenth of a degree
31) $15^{\circ} 30^{\prime}=15.5^{\circ}$

$$
\frac{30}{60}=.5
$$

divide the minutes part by 60 because there are 60 minutes in a degree.

Express in degrees and minutes to the nearest minute.

$$
\text { 39) } \begin{aligned}
& 25.4^{\circ} \cong 25^{\circ} 24^{\circ} \\
& 60 \\
& \times \cdot 4 \\
& \hline 24
\end{aligned} \text { multiply the decimal part by } 60 \text { because there are } 60 \text { minutes in a degree. }
$$

